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The effect of variable and rotating magnetic fields on the thermal convective sta- 
bility of a magnetizable fluid is investigated. The nature of the dependence of 
the stability boundary on the magnitudes of the magnetic field and the modulation 
amplitude and frequency is determined. 

Until now, mainly cases of inhomogeneous external fields [1-3] have been considered in 
investigations of the convective stability of a magnetizable fluid. In these situations the 
mechanism of thermomagnetic convection is explained and determined by the magnetic field 
gradient, but the description is based on the gravitational analogy. 

Within the framework of this standard approach, a homogeneous magnetic field should not 
affect the convective stability of a magnetizable fluid. The specifics of the effect of homo- 
geneous magnetic fields on thermoconvective processes can be explained only in taking account 
of the magnetic field distortions caused by the thermal perturbations. 

This circumstance was first noted in [4] and was later studied in [5-7]. The convective 
stability of a magnetizable fluid heated from below was investigated in these papers in sta- 
tionary slightly inhomogeneous and homogeneous magnetic fields. Moreover, the effect of non- 
stationary high-frequency magnetic fields on the thermoconvective stability was investigated 
in [7]. Investigations performed showed that the magnetic field perturbations caused by 
thermal perturbations in a nonisothermal magnetizable fluid stabilize the critical motion 
with wave vector parallel to the equilibrium field. If no other critical motions exist, then 
the magnetic field perturbations will depend on the modulation amplitude (the greater the= 
modulation amplitude, the more stable the layer). It has been explained that the stabiliza- 
tion caused by the field perturbations can be full for a definite magnetic field magnitude. 

It should be expected that the convective stability of a magnetizable fluid will have 
specific features in time-varying magnetic fields at moderate frequencies; parametric domains 
will probably appear in addition to the fundamental stability (instability) domains. 

In this connection, the convective stability of a magnetizable fluid is investigated be- 
low in rotating and time-varying magnetic fields of arbitrary frequency. 

We shall consider the magnetization of the fluid to be described by the linear equation 
of the "magnetic state": 

M~xH, X=~*-- d~ (T--T*). 
dT 

Then the velocity, temperature, and magnetic field perturbations developed in the magnetiz- 
able fluid in a homogeneous magnetic field will satisfy a system of dimensionless equations 
[7] (the z axis of the Cartesian coordinate system is vertical, the x and y axes are horizon- 
tal, andthe followingare thescales selected: layer width I for the coordinates, 12/~ for the 
time, • the velocity; y1 the temperature perturbations; yH*~(~x/~T)/(I + X) for the magnetic 
field perturbations, H* is the equilibrium magnetic field) 
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i. In order to clarify the nature of the influence of a variable homogeneous magnetic 
field on the thermoconvective stability of a magnetizable fluid, let us examine the sta- 
bility of a plane vertical layer of the same fluid heated from below. The time-modulated 
homogeneous fluid is transverse to the layer and directed along the x axis: Ho = [i + ~(t)], 
where ~(t) is the modulating function. (Such a field is a solution of the ~xweli equations 
and satisfies the boundary conditions if the layer is surrounded by the bulk of a solid fer- 
romagnet with the same magnetic characteristics as the fluid.) 

Let us consider the plane critical motions parallel to the channel axis: 

v z, 0, t D ~ f ( x ,  t). ( 2 )  

Such perturbations satisfy the boundary conditions 

v z = 0  = d(I) ----0 for x = + l / 2 .  (3 )  
dx 

P r o b l e m  ( 1 ) - ( 3 )  has  t h e  s o l u t i o n  

vz, O, (D ,-, f (l) COS aZ, (4 )  

corresponding to the fundamental instability level. 

2. The singularities of the effect of a rotating magnetic field on the convective sta- 
bility of a magnetizable fluid are investigated in the example of a horizontal layer of such 
a fluid heated from below (the magnetic field is rotated in the plane of the layer). In 
this case the magnetic field is constant in magnitude and has the components 

Hx0 = cos or, H~o = sin or, H,o = O. 

This situation is investigated most simply in the free boundaries case when the boundary con- 

ditions have the form 

~z 
v z =  - - - - - - 0 - - - - ( 1 ) = 0  for z =  4 - I /2 .  

dz ~ 

The condition ~ = 0 corresponds to the fact that the magnetic permeability of the mag- 
netizable fluid is much greater than the magnetic permeability of the surrounding bulk. In 

this case system (i) has the solution 

v~, O, (I) --, f (t) exp (ikr) cos n~z (5)  

3. Having substituted (4) or (5) in the governing system of equations (i), after simple 

manipulations, we obtain an equation of Hill type 

+ 2eO + 0 {l - -  Rab + D b ~ ( , ) }  = 0, (6 )  

where c = (i + Pr)P/~r and the dbt denotes the derivative with respect to the new dimension- 
less time T. The stability boundary can be found from an analysis of (6) for both the hori- 
zontal layer of the magnetizable fluid placed in a longitudinal rotating field, and for the 

vertical layer in a transverse homogeneous variable field. 

In the case of the vertical layer 

For the horizontal layer 

b== 11~4, T = t V P r I ~  2, ~ ( ~ ) =  [I-k- 6q~(~)] ~. 

b =- kV(k~+ n ' n W ,  �9 = t V-~r/(k~+ n2nD, 

V (T) = [kx cos cot + k,j sin otp/ (k~+ n2a~). 
The problem is to seek the stability and instability domains of the solutions of (6) as 

a function of the values of the governing parameters. 

4. Let us first consider the stability of the vertical layer. The sinusoidal modulation 
~(T) = sin~T is of greatest interest. In this case the stability domain boundaries are 
found analytically for the high frequencies [7], and as has been mentioned, depend monotoni- 
cally onthe modulation amplitude. The stability boundaries of the solutions of (6) can be 
found quite simply for arbitrary values of m if the sinusoidal modulation is replaced by 
rectangular modulation. As is known [8, 9], the general properties of solutions of the 

Hill equations hardly vary under such a replacement. 

Let us assume the modulation to occur according to a rectangular law (for 0 < t < ~/m 
= 1 and for ~/m < t < 0 ~ =--i). Then the solutions of (6) have the form: 
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Fig. i. Dependences Ra(i/a) for e = /2, ~ = i, N = 1/10w ~. 
Fig. 2. Dependences Ra(i/~) for ~ /2, 6 = i, N = 3/16~" 

i n  d o m a i n  1 (0  < t < 7/ t0)  

0 ( ' )  - -  e -~T (c~ sin =~ + c2 cos =~), = = l / 1 - - R a / ~ 4 +  D (1 +6)~/~4--8  ", ( 7 )  

i n  d o m a i n  2 ( - v / a  < t < 0)  

0 (2) = e - ~  (c~ sin ~x + c~ cos ~T), 6 =  ] / 1 - - R a / g 4 +  D ( 1 - -  6)~/a~--e ~, ( 8 )  

0 and  ~ s h o u l d  b e  c o n t i n u o u s  a t  t = 0 :  

0 ('~ (0) -= ____. 0 (~) (0), O(=) (0) =- ::h() (~) (0). (9) 

Let us also require compliance with the periodicity conditions, i.e., let us seek period- 
ic solutions of (6) 

o (~) (~1(o) = • 0 (~ (--  ~/o)), o(~) (~1o)) = _ 6 (~) ( - -  ~lo)). ( lO)  
Substituting solutions (7) and (8) into conditions (9) and (i0), we obtain a system of 

linear homogeneous equations which has a nontrivial solution if its determinant equals zero, 
which results in the following relation 

cos cos sin sin . . . . . .  _ eh ( t l )  

connecting the quantities Ra, D, ~, ~, and m. Since Ra ~ ~ and D ~ ~ , then in order to ana- 
lyze the influence of the temperature gradient on the convective stability explicitly, it is 
convenient to introduce the parameter N = D/Ra 2 which is independent of y. 

Fixing the quantities s, ~, and N, we find the dependence of the critical value of the 
Rayleigh number Ra on the frequency numerically from (ii). It turns out that the stability 
pattern depends essentially on the magnitude of the parameter N. 

Let us first examine the case N < N* = i/,~4(i§ ~2). If there is no modulation, then the 
instability domain in the Rayleigh numbers has lower and upper bounds [7] 

(1 V 1 --4n4N)/2N<Ra<(1 + ] / 1  - -  4~4 N~2N 

and is independent of the damping parameter E. In the presence of modulation (~ ~ 0), para- 
metric instability domains appear in addition to the fundamental instability strip. The 
stability and instability domains on the coordinate plane (Ra/~", i/m) are shown in Fig. i 
for s = r 6 = i, N = ~io~". It is easy to see that at high frequencies the dependence of 
the critical value of the Rayleigh number of the frequency is monotonic in nature (there is 
no parametric instability). In this case , by expanding the left and right sides of (ii) in 
power series in i/w and ~, we obtain 

Ra = ~ +  Ra ~ N(1 -4-6 ~) + Ra4 N~ 6~/4o 2. ( 12 )  
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Fig. 3. Dependences of the critical value of the Rayleigh 
number on the modulation amplitude. 

Fig. 4. Neutral curves: I) N = 1/400; 2) 1/800; 3) I/i0 ~. 

The term dependent on the frequency in the right side drops out in the limit m § ~ and (12) 
goes over into the more simple expression 

Ra -- a~+ Ra~ N(1 + 69. (13) 

Solving (13) for Ra, we obtain the boundary of the fundamental instability band as ~ + 

I--~i"4~'N{1 +62 ) ~Ra~- l+FI--4m4N(I+62 ) (14) 
2N~( i'"'+ 6') . . . . . . . . . . . . . . . . . . . . . .  2N (J + 62) 

The boundaries of the fundamental instability domain, defined by (14), are shown in Figs. 
1 and 3 by dashes. 

The width of the fundamental instability band depends substantially on the parameters N, 
and vanishes completely for[N > N* =i/4~(i +6a)] (Fig. 2, e = /2, r = I, N =3/16~"(N * = 

i/8~)). A stability domain (whose width grows with the increase in e, 6, and N) exists above 
the fundamental instability domain and separates it from the parametric instability domains. 
These domains contract as e increases. They shift to the higher Rayleigh numbers as N grows. 
The parametric instability domains include the broadest frequency bands for ~ = i. As r di- 
minishes, they shift into the high frequency domain and vanish entirely for low modulation 
amplitudes. For high Rayleigh numbers Ra >> I/N and 6 = 1 the equations of the lines separat- 
ing adjacent instability domains have the form 

2a '  Ra ~rNN 
= i ( i = %  I, 2 . . . ) .  

In  o r d e r  t o  i l l u s t r a t e  t h e  dependence o f  t he  c r i t i c a l  v a l u e  of  the  Ray le igh  number on t he  
modu la t ion  a m p l i t u d e ,  the  dependence Ra(6)  i s  shown in  F ig .  3 f o r  ~ = i .  

T h e r e f o r e ,  p e r i o d i c  modu la t ion  of  a homogeneous magnet ic  f i e l d  s u b s t a n t i a l l y  i n f l u e n c e s  
the  c o n d i t i o n  f o r  t h e  o r i g i n a t i o n  o f  c o n v e c t i o n .  In  t h i s  c a se  t he  s t a b i l i t y  boundary i s  de-  
t e rmined  not  on ly  by t h e  t e m p e r a t u r e  g r a d i e n t ,  t he  magni tude o f  the  magnet ic  f i e l d ,  and t h e  
c h a r a c t e r i s t i c s  o f  t h e  m a g n e t i z a b l e  f l u i d ,  but  a l s o  depends i n  a complicated way on the  modu- 
l a t  i on  f r e q u e n c y  and a m p l i t u d e .  

At h igh  and low f r e q u e n c i e s  t h i s  dependence i s  monotonic  in  n a t u r e  ( r e s p o n s e  domains do 
not exist). In the intermediate case, resonance instability (stability) domains (see Fig. 
3) appear with the increase in the amplitude. 

5. Let us consider the convective stability of a horizontal layer of magnetizable fluid 
in a rotating field 

H~0 = cos or, //yo = sinot, H~o = O. 
As has been shown above, this p~oblem reduces to the investigation of solutions of (6). For 
arbitrary values of the parameters this equation can be solved only numerically, but in cer- 
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rain limit cases (at high frequencies, for example) it can be solved analytically. 

Assuming the frequency "high," let us use the method of averaging [i0], then by simple 
calculations we arrive at the stability boundary equation 

Ra ( k i +  n~ai)a k~ /~ Re4 N2 ---- ~ Ra ~ N + ( 15 ) 
k 2 2 ( k ~ +  n ~  ~) 32 (k 2 + n i ~ )  5 ~2 

Thus ,  t h e  s t a b i l i t y  b o u n d a r y  h a s  b e e n  f o u n d  to  t h e  a c c u r a c y  of  t h e  t e r m s  1 /~  a ,  and Eq. (15) 
o b t a i n e d  i s  a n a l y z e d  n u m e r i c a l l y  o n l y .  Hence ,  by p a s s i n g  to  t h e  l i m i t  ~ + ~ ,  we have  a 
q u a d r a t i c  e q u a t i o n  i n  Ra f o r  t h e  s t a b i l i t y  b o u n d a r y ,  wh ich  we s o l v e  t o  o b t a i n  

Ra = [1 q- ~ 1  - -  2N (kiq - n2~2)] (k 2 ~- nini)/N k 2. ( 1 6 )  

I t  i s  s e e n  t h a t  f o r  N > 1 / ( k  2 + n2~2) 2 a b s o l u t e  s t a b i l i z a t i o n  o f  t h e  h o r i z o n t a l  l a y e r  o f  a 
m a g n e t i z i n g  f l u i d  by a homogeneous  r o t a t i n g  m a g n e t i c  f i e l d  h o l d s .  

The f a m i l y  o f  n e u t r a l  c u r v e s  Ra(k)  f o r  t h e  f i r s t  mode (n = 1) i s  shown i n  F i g .  4. I t  i s  
s e e n  t h a t  t h e  c r i t i c a l  v a l u e  o f  t h e  R a y l e i g h  number  i n c r e a s e s  w i t h  t h e  g rowth  o f  N, w h i l e  t h e  
c r i t i c a l  wave number  k c r  d e c r e a s e s .  

A b s o l u t e  s t a b i l i z a t i o n  s e t s  i n  f o r  N = l / 2 ~ " ; i f  0 < N < 1 / 2 ~ " ,  t h e n  t h e  wave numbers  of  t h e  
p e r t u r b a t i o n s  c a u s i n g  t h e  i n s t a b i l i t y  h a v e  t h e  u p p e r  bound k < k ~.  

T h e r e f o r e ,  a h i g h - f r e q u e n c y  r o t a t i n g  m a g n e t i c  f i e l d  s u b s t a n t i a l l y  r a i s e s  t h e  t h r e s h o l d  
s t a b i l i t y  of  a m a g n e t i z a b l e  f l u i d  l a y e r  h e a t e d  f rom be low up t o  t o t a l  s t a b i l i z a t i o n  o f  t h e  
l a y e r .  

The p o s s i b i l i t y  o f  t h e  o r i g i n a t i o n  o f  m a c r o r o t a t i o n s  u n d e r  t h e  e f f e c t  of  a r o t a t i n g  mag- 
n e t i c  f i e l d  s h o u l d  be  k e p t  i n  mind i n  a p p l y i n g  t h e s e  r e s u l t s  to  a f e r r o m a g n e t i c  f l u i d .  

NOTAT I ON 

M and H, fluid magnetization and magnetic field intensity vectors; M and H, their mag- 
nitudes; T, temperature; Vz, vertical velocity component; ~, magnetic field perturbation 
potential H' = V~; 0, temperature perturbation; 0, density; X, magnetic permeability; ~, coef- 
ficient of kinematic viscosity; ~, coefficient of thermal diffusivity; T, temperature gradi- 
ent; g, acceleration of earth's gravitation; l, layer height; x, y, z, Cartesian coordinates; 
2 2 + 2 

k = k x kv, square of the wave number; D = ~o(~M/~T)2y=l"/~xp(l + X), parameter characteriz- 
ing the conkribution of the magnetic field perturbations; Ra = ~gyl"/~u, Rayleigh number; Pr = 
~/• Prandtl number; ~ =- I/0(~0/~T); c = (l+Pr)/P~r, damping parameter; Al = ~2/~x2 + ~=/~y2. 
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